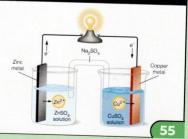
ELECTRO CHEMISTRY

Electrochemical/Galvanic/ Voltaic Cell


- Spontaneous Reaction → Electrical Energy
- ΔG < 0 (meaning Spontaneous Redox Reaction)
- Anode (-): Oxidation; Cathode (+): Reduction

Electrolytic cell

- Electrical Energy used for non-Spontaneous Reaction
- ΔG > 0 (meaning non Spontaneous Reaction)
- Anode (+): Oxidation; Cathode (-): Reduction

Electrochemical/Galvanic/ Voltaic Cell

Daneil Cell

Important Points : Daniel Cell (Galvanic)

- Anode : Zn(s) → Zn²⁺ (aq) + 2e⁻
- Cathode : Cu²⁺ (aq) + 2e⁻ → Cu(s)
- Overall Reaction: Zn(s) + Cu²⁺ (aq) → Cu(s) + Zn²⁺(aq)
- Representation: Zn | Zn²⁺(aq) | | Cu²⁺(aq) | Cu.
- Here || represents salt Bridge which completes circuit.
- The concentration of Zinc Sulphate increases while the concentration of Copper Sulphate decreases.
- The zinc rod loses mass while copper gains it.
- In both the compartments, the solutions remain electrically neutral. Net cell Potential, E°cell = 1.1 eV

Salt Bridge

- U-Tube containing solutions of inert electrolytes.
- KCI, KNO₃, K₃SO₃ or NH₄NO₃.
- KCl is not used in electrodes of Ag, Tl, Pb, Hg.
- Inner circuit completed by flow of ions through S.B.
- · Maintains Electrical neutrality.
- Prevents Liquid-Liquid Junction potential.
- Ionic mobility (Cation) = Ionic Mobility (Anion)

Standard Electrode Potential (E°)

- Potential difference between electrode and solution at standard coditions of 1M at 25°C and 1 atm
 - Oxidation Potential : $E^{o}_{Zn^{2+}/Zn}$

These have equal Reduction Potential : $E^{o}_{Zn/Zn^{2+}}$ and opposite values

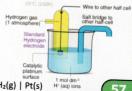
Standard Reduction Potential (E°red)

- Mostly used in questions (values provided)
- Representation: EOMn+/M
- For **Hydrogen**, SRP is taken as $E_{H_2/H^{+=}}^{o}$

EMF of a cell

- Potential difference between two electrodes
- EMF = Red. Pot. where -Red. Pot. where reduction occurs Oxidation occurs
- NOTE: Use only Reduction potential to not get confused

$$E^{o}_{cell} = E^{o}_{cathode} - E^{o}_{anode}$$


Standard Hydrogen Electrode

Reference electrode used to find electrode potential of other electrodes.

Anode: $H_2(g) \rightarrow 2e^- + 2H^+(aq)$ Cath.: $2e^- + 2H^+(aq) \rightarrow H_2(g)$

Representation of cell:

 $Pt(s) \mid H_2(g) \mid H^+(aq) \mid \mid H^+(aq) \mid H_2(g) \mid Pt(s)$

Electrochemical Series

Thermal Stability of metal oxide —

Corrosion Tendency

- Lion Kings Can Not Make A Zebra Fed Near Sun Pablo
- Cute Mercury Silver Gold Platinum

Other Points about Electrochemical Series

- Lithium has most negative Reduction potential.
 Strongest reducing Agent
- Fluorine has most Positive Reduction potential.
 Strongest Oxidising Agent
- · Reactivity Decreases on Going from Li to F.
- · If we go from Li to F,
 - The Metal lying above in E.C.S displaces the other metal lying below
 - The non metal lying below in E.C.S.displaces the other metal lying above.

Nernst Equation

Half Cell Nernst Equation : Mn+ + ne- → M

$$E = E_{cell}^{o} - \frac{0.059}{n} log \frac{1}{[M^{n+}]}$$
 at 298K

Half Cell Nernst Equation : Bⁿ⁺ + A → Aⁿ⁺ + B

$$E = E^{o}_{cell} - \frac{0.059}{n} log \frac{[A^{n+}]}{[B^{n+}]}$$
 at 298K

 $E = E^{o}_{cell} - \frac{RT}{nF} ln \frac{[A^{n+}]}{[B^{n+}]}$ At Any other Temperature

Relation between AG and EMF of cell

- ΔG is an extensive (Additive) Property, E° is an intensive (non Additive) Property.
- $\Delta G = -nRTlnK_c$ $=-nFE^{o}_{cell}$
- If two half cells Having Potentials E₁° & E₂° are combined to give third half cell with E3°. Then,

$$E_3^o = \frac{n_1 E_1^o + n_2 E_2^o}{n_3}$$
 Where, n = Number of electrons involved

Other Formulas

Temp. Coeff	Enthalpy Change of rxn	Entropy change
(_{∂E})	$-nEE + nET \left(\frac{\partial E}{\partial E}\right)$	$nF\left(\frac{\partial E}{\partial E}\right)$

$$\left(\frac{\partial E}{\partial T}\right)_{P} = -nFE + nFT \left(\frac{\partial E}{\partial T}\right)_{P} nF \left(\frac{\partial E}{\partial T}\right)_{P}$$

Concentration Cells, Here (E°=0)

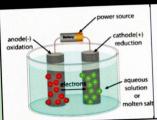
Electrolytic Concentration Cells

Same Substance used with different concentration

Cathode: M^{n+} (c₂) + $ne^- \rightarrow M(s)$

Anode : $M(s) \rightarrow M^{n+}(c_1) + ne^-$

Overall Reaction :

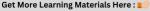

 $M^{n+}(c_2) \rightarrow M^{n+}(c_1)$

 $E = \frac{0.059}{n} \log \frac{c_2}{c_1}$

Electrode Concentration Cells

E.g. Two hydrogen electrodes at different pressure dipped in sam solution of H* ion $E = \frac{0.059}{n} log \frac{p_2}{p_1}$

Electrolytic Cell


- Cells which bring Chemical Change during passage of electric current.
- Cations go to Cathode
- Anions go to Anode

According to Preferential Discharge Theory,

- In case of Cations, Higher E°(red), Migration faster.
- In case of Anions, SO₄²-<NO₃-<Cl-<Br-<l->OH-

	Product	of Elec	trolysis		
Ionic Comp.		7.	node	Electrode	
CuSO ₄	Cu		O ₂	Pt/graphite	
CuSO ₄	Cu		Cu	Cu Electrode	
AgNO ₃	Ag		0,	Pt/graphite	
NaCl	H ₂		Cl ₂	1.0	
Conc. H ₂ SO ₄	2H+ + 2e ⁻ →H ₂	11		Pt/graphite Pt/graphite	
AgNO ₃	$Ag^+ + e^- \rightarrow Ag$		Ag+ + e-	Ag (inert)	
	araday's La	w of El	ectrolysi		
1st Law of Faraday					
Weight of Metal deposited ∞ Quantity of charge passed					
$W \propto Q$ $W = ZQ$ $W = Z \times i \times i$					
Z = Electrochemical Equivalent; i=current; t = time					
Other important formula from exam P.O.V. $W = \frac{\text{eq. weight}}{96500} \times Q$				The state of the s	
	2nd Law				
diff. electroly	same charge tes brings in a ion to be ox.	equal	$\frac{W_A}{E_A} = \frac{1}{2}$	$\frac{W_{\rm B}}{E_{\rm B}} = \frac{W_{\rm C}}{E_{\rm C}}$	

Resistance	V		
V = Voltage, I = Curren	$R = \frac{V}{I}$	Ohm	
Resistivity A= area of Cross sec = dist. b/w electrodes	$\rho = \frac{RA}{l}$	Ohm-m	
Conductance	$G = \frac{1}{R}$	ohm ⁻¹ Siemen (S)	
Conductivity	$k = \frac{l}{RA}$	ohm ⁻¹ m ⁻¹ S m ⁻¹	
Cell Constant	$c. c. = \frac{1}{A} = k \times R = \frac{k}{G}$		
Types	of Conductivitie	es ····	
$\begin{array}{c c} \textbf{Molar} \\ \textbf{Conductivity} \end{array} \boldsymbol{\Lambda}_m$	$=\frac{k\times 1000}{C}$	S cm² mol ⁻¹	
Molar Conductivity $\Lambda_{\rm eq}$	$=\frac{k\times 1000}{N}$	S cm² mol ⁻¹	
Relationship $\Lambda_{\rm m}$	$= \Lambda_{eq} \times n.f.$	n-factor is total +ve or -ve charge	

Debye huckel Molar Conductivity

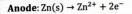
Relation between Molar conductivity and concentration

$$\Lambda_{\rm m} = \Lambda_{\rm m}^{\ \ 0} - {\rm A}\sqrt{c}$$
 A depends on electrolyte nature

Kohlrauch's law

If the limiting molar conductivity of the cations is denoted by λ_{+}° and that of the anions by λ_{-}° then the limiting molar conductivity of electrolyte is:

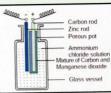
$$\Lambda_{\rm m}^{\ 0} = v_{+}\lambda_{+}^{\ 0} + v_{-}\lambda_{-}^{\ 0}$$
 v = no. of ions present


eg. BaCl₂
$$\Lambda_{m(BaCl_2)}^{o} = \lambda_{Ba^{2+}}^{o} + 2 \times \lambda_{Cl}^{o}$$

Application to calculate D.O.D of weak Electrolytes using conductivity $\alpha = \frac{\Lambda_m}{\Lambda_m}$

$$K_{a} = \frac{C\alpha^{2}}{(1-\alpha)} = \frac{C\Lambda_{m}^{\ 2}}{\Lambda_{m}^{\ o} \left(\Lambda_{m}^{\ o} - \Lambda_{m}\right)} \qquad \begin{array}{c} \text{Equilibrium} \\ \text{constant} \end{array}$$

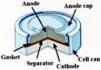
Batteries


Primary: Leclanche cell

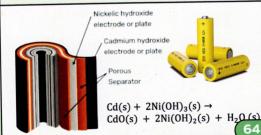
Cathode:
$$MnO_2 + NH_4^+ + e^- \rightarrow$$

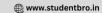
 $MnO(OH) + NH_3$

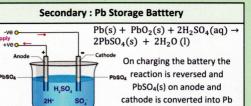
NH₃ forms a complex with Zn²⁺ Cell Potential Energy = 1.5 V


Primary: Mercury cell

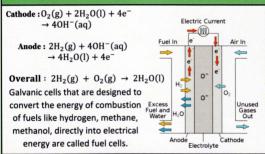
 $ZnO(s) + H_2O + 2e^{-}$

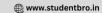

Cathode: $HgO + H_2O + 2e^- \rightarrow$


HgI + 20H

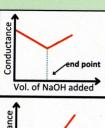

Cell Potential Energy = 1.35 V

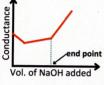
Secondary : Ni-Cd Battery



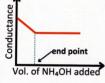


and PbO2 respectively.

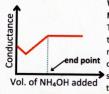

Fuel Cells



DC supply


Strong Acid HCI - Strong Base NaOH

The fast-moving hydrogen ions are replaced by slow-moving sodium ions and the conductance decreases gradually up to the equivalent point.


Weak Acid CH₃COOH - Strong Base NaOH

Slight decrease in the conductance of the solution due to the substitution of free H+ ions by slow-moving Na+ ions.Then increase due to formation of CH₂COONa

Strong Acid HCl - Weak Base NH₄OH

The fast-moving H+ ions are replaced by slow-moving NH4+ ions. Therefore, the conductance decreases until the endpoint is reached.

Weak Acid CH₃COOH - Weak Base NH₄OH

The conductance slightly decreases due to the substitution of H+ ions by slow-moving NH4+ions. On further addition of NH4OH solution, the conductance of solution increases til the endpoint due to the formation of highly ionized